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3NP, UK 

Received 17 October 1985 

Abstract. Families of regular fractal models for Witten-Sander (DLA)  clusters in d 
dimensions are proposed resembling the computer generated aggregates. We evaluate 
random walk dimensionalities exactly using resistance scaling ideas. The applicability of 
the conflicting conjectures of Alexander-Orbach (AO),  d, = 3d , /2 ,  and Aharony-Stauffer 
(AS),  d, = d,+ 1, to DLA is then examined. We find that the dendritic nature of the fractals 
presented ensures that AS is satisfied exactly in all dimensions. An RSRG fugacity transfor- 
mation method is applied to the simplest of the regular fractals in d = 2. The result for 
d, is compared with the exact resistance scaling result to obtain an estimate of the error 
introduced by the RSRG. The RG method is then generalised to treat the random DLA 

problem. The resulting estimate for d, is in fortuitously good agreement with AS, the 
corresponding Monte Carlo data and the results above for the regular fractal models. 

1. Introduction 

The problem of random walks on percolation clusters at the percolation threshold 
(Rammal and Toulouse 1983, Gefen er a1 1983), lattice animals (Family 1983, Gould 
and Kohin 1984) and other such ‘fractal’ systems, e.g. hierarchical lattices (Given and 
Mandelbrot 1983), has received much attention since it was first introduced by de 
Gennes (1976) in the context of the ‘ant in the labyrinth’. 

Whereas such random fractals as percolation clusters or lattice animals are equili- 
brium clusters, DLA clusters (Witten and Sander 1981, 1983) are formed kinetically 
and it is found that their static ‘critical’ behaviour lies in a new universality class 
(Gould et al 1983). Much less is known about random walks on DLA (Meakin and 
Stanley 1983) and in particular (Guyer 1984) whether spectral and walk dimensions 
of DLA satisfy conjectured relationships to the fractal dimension. This topic is studied 
in the present paper. 

The growth process of a DLA cluster, as described by Witten and Sander (1981), 
is as follows. At t = 1 a seed particle is placed at the centre of a large hypersphere. 
At t = 2 a second particle is released at a random point on the hypersphere and allowed 
to perform a random walk until it reaches a perimeter site, where it sticks. At t = 3 a 
third particle is released and so on until a large aggregate is built. The DLA aggregate 
so formed has an anomalous scale invariance: For instance, the density-density 
correlation function ( p ( r ’ +  r ) p (  r ’ ) )  has the following asymptotic behaviour: 

( p ( r ’ +  r ) p (  r ’ ) )  - r - A .  
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The exponent A is related to the fractal (or Hausdorff) dimension (Mandelbrot 
1982) df of the aggregate, which is defined by the following relationship between linear 
dimension tf and number of particles Nf (both large) of the cluster: 

Nf - (Sf) df* (1.2) 

d f = d  - A  (1.3) 

A volume integration of ( 1 . 1 )  leads to the relation 

where d is the space dimension. 
The statistical scale invariance underlying ( 1 . 1 )  and (1.2) makes the theory of DLA 

expressible in the language of critical phenomena. 
As a consequence of the specific growth process involved, DLA aggregates are 

distinctly different fractals (having different values of d,) from either percolation clusters 
or random lattice animals (Could et a1 1983). It then also becomes necessary to 
understand the relevance of the specific growth type to dynamic processes such as 
diffusion on the DLA. 

Apart from intrinsic interest in DLA as an example of a fractal in a new universality 
class it has applications to a variety of systems. DLA has been used as a model for 
growth of tumours (Williams and Bjerknes 1972), coagulation of smoke particles 
(Forrest and Witten 1979), growth of crystals from an undercooled melt or a supersatur- 
ated solution (Langer 1980), turbulence (Hentschel and Procaccia 1982), dielectric 
breakdown (Niemeyer et a1 1984) and viscous fingering (Nittmann et a1 1985). 

Now, in classical diffusion in Euclidean space only a single length scale exists. 
This length is the RMS displacement 5, of the random walker from the origin. The 
number of steps N, of the walk is related to 5, in the limit N, >> 1 by a power law 
form from which one defines the dimensionality of the walk d,: 

Nw-(&Jd*. (1.4) 
Diffusion processes on such Euclidean spaces are characterised by the Flory result 

d, = 1/  v = 2 valid for all d. 
When the ‘ant’ is on a fractal a second competing length occurs. In the case of 

DLA this length is the radius of gyration tf, introduced above as a measure of the 
linear dimension of the fractal cluster. 

For diffusion on such fractal systems (df< d )  we expect a crossover between the 
asymptotic behaviours of two limiting regimes. In the first one 5, >> (f and d, = 2. We 
are interested in the ‘self-similar’ regime where 1 << [,<< &. In this limit d, depends 
on the particular system and the diffusion is said to be anomalous. 

Further, Alexander and Orbach (1982) observed that the anomalous scaling of the 
density of states on a percolation cluster was governed by an exponent, the spectral 
or fracton dimension d,, which appeared superuniversal in that it was independent of 
d. Alexander and Orbach showed that d, = 2df/d, and conjectured that 

d,(=2df/d,) =$  (1 .5)  
independently of d. The AO conjecture has been extended to apply to homogeneous 
fractals (see Leyvraz and Stanley 1983) of which DLA clusters are supposed to be an 
example. 

However, recent arguments against the AO conjecture have emerged (see Family 
and Coniglio 1984) and accurate numerical work (Zabolitzky 1984) seems to indicate 
that AO fails in d = 2. Aharony and Stauffer (1984) have presented an argument that 
applies to fractals with df s 2 and they conclude that 

d, = df+ 1 (1.6) 
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implying a breakdown of the AO rule d, = 3df/2. Specifically, the AS conjecture should 
apply to DLA in two dimensions. 

In the present paper we test the AO and AS conjectures for simple and generalised 
regular fractal models of DLA. We then proceed to apply RSRG ideas to the random 
system. Our results favour the latter conjecture. 

The plan of the paper is as follows. In 0 2 our initial investigation of the simplest 
of regular models for DLA, originally proposed by Vicsek (1983), is similar to the work 
of Guyer (1984) who treated walks on the fractal using RG on a diffusion equation. 
We map the system trivially onto an equivalent resistor network and use the method 
of resistance scaling to derive the analogue of the percolation conductivity exponent 
t and hence the dimensionality of walks on the regular fractal. We extend the method 
to the corresponding fractal family in d dimensions. We repeat the method for another, 
possibly more authentic, regular fractal family in d dimensions. Finally we investigate 
the effect of introducing loops on the spectral dimensionality. 

In § 3 we limit ourselves to d = 2 and apply real space renormalisation group 
fugacity transformation methods to the simpler of the fractals mentioned above. Results 
for d, are obtained and compared with the exact results from 0 2. This serves as a 
check for the RSRG method and indicates whether one is likely to obtain reasonable 
results when one applies it to the random case. 

In § 4 we treat DLA proper (the random case) using RSRG and compare our results 
with those of the corresponding Monte Carlo simulation (Meakin and Stanley 1983). 

2. Resistance scaling for regular models of diffusion-limited aggregates 

When proposing suitable regular models for DLA aggregates, one must preserve the 
essential physical attributes of the random structures as suggested by Monte Carlo 
pictures (see Meakin 1983). For instance, the models should have some form of 
rotational symmetry and have suitable fractal dimensionality. They must also be 
dendritic (i.e. have no loops) as this seems to be a characteristic feature of the aggregates. 

In dealing with DLA we are ipso facto dealing with site structures. In order to 
introduce a resistor network, it is however necessary to express the problem in terms 
of resistors or ‘bonds’. We therefore need a non-random model of a DLA cluster which 
builds the cluster hierarchically but is composed of both sites and bonds. In figure 1 
we show three successive stages in the iterative construction of the simplest of such 
models (Vicsek 1983). At each iteration the lattice spacing a is reduced to, say, a /  b 
and more detail of the fractal is generated. This process is repeated such that a + a /  b + 
a /  b 2 + .  . . + a /  b“. In the limit n + 00 we obtain the regular fractal shape. 

Decimation - - - __c 

Decimation 

Construct ion 

A’ *+” A W ’ ’  

Construction 

Figure 1. Recursive construction of regular fractal resistor network for DLA composed of 
sites and bonds. 
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This construction may be reversed by decimation. Here short range degrees of 
freedom are eliminated followed by a length scale dilatation a + ba. However, if we 
now assign a resistance p ( a )  to each bond and, in the decimation-dilatation process, 
conserve the potential difference between two sites separated by a fixed length 6, we 
then have the following scaling ansatz for the resistance: 

p(ba) = bdrp(a ) .  (2.1) 
b is here the length scale dilatation factor and d ,  is the fractal dimension of the effective 
one-dimensional resistance length of the aggregate. We then use the relation 

d ,  = d f +  d ,  (2.2) 
due to Alexander and Orbach (1982) and Stanley and Coniglio (1984) to determine 
the random walk dimensionality d,.  

We illustrate the method for a b = 3 dilatation and perform the decimation indicated 
in figure 2(a) .  Let V A B  be the potential difference between A and B when current I 
flows from A subject to VAe= VAC= VAD. By trivial application of Ohm's and 
Kirchoff's laws one finds that 

vAB(a) = iIp(a) V A ~ B ~ (  ba) = f Z p (  ba ) .  (2.3) 
It then follows using the scaling ansatz that 

d ,  = log 3/log 3 = 1 

so using d ,  = d f +  d ,  we obtain 

d ,  = log 15/log 3 = 2.41. 

D I -  
1 
C 

U 

t 
t C 

t ( c l  

Figure 2. Decimation for simple fractal model with length scale dilatation factor ( a )  b = 3 
and ( b )  b = 9. (c )  Decimation for simple model in three dimensions with scale factor b = 3. 
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Repeating the process for a b = 9  dilatation (figure 2(b)) one obtains 

d, = log %/log 9 (2.6) 

and so 

d, = log y / l o g  9 = 2.56. 

d,=log[(b - l )+ (b*-  1)/(3b - 1)]/10g b. 

(2.7) 

(2.8) 

In fact the calculation is easily done for general b = 3N and yields 

In the limit of b +CO we recover 

d,= 1. (2.9) 

This result agrees exactly with the AS conjecture. It implies that the path followed 
by a particle, in traversing a region of the fractal of linear extent of order tf, is 
essentially one dimensional, albeit highly decorated. We therefore obtain for the 
random walk dimensionality d, 

(2.10) d, = log 15/log 3 = 2.47 

and for the spectral dimensionality d, 

d, = 2df/d, = log 25/10g 15 i= 1.19. (2.11) 

The result above for d,  is over 10% lower than the AO prediction but in exact 
agreement with the AS conjecture. It is also consistent with the work by Guyer (1984) 
on the same model who used decimation on a discrete diffusion equation and obtained 
d,= 1. The result also agrees well with the Monte Carlo simulation of Meakin and 
Stanley (1983) on the random system which gave d, = 1.20 (+0.10, -0.05). 

It is straightforward to generalise the above to apply for arbitrary embedding 
dimension d. We construct a family of fractals such that the ‘unit cell’ is now a 
d-dimensional cross with 2d arms (the case d = 3 is shown in figure 2(c)). From this 
one obtains 

d,=log(2d + l)/lOg 3. (2.12) 

The resistance rescaling calculation in general d again yields the AS result d r+  1 
as b + a .  One therefore has 

log 3(2d + 1) 
log 3 

2 log(2d + 1) 
log 3(2d + 1)’  

d, = d, = (2.13) 

In particular then for d = 3, we have d, = 1.28 which again compares favourably 
with the corresponding Monte Carlo result (Meakin and Stanley 1983) for the random 
system d, = 1.30 f 0.06. 

From (2.12) it is evident that for d > 4 we have d - dF> 2. This however makes the 
cluster transparent to incoming random walkers whose path has dimensionality d, = 2. 
The incoming particles would therefore enter into the central regions of the aggregate 
and alter its structure, increasing its fractal dimension d,. It would appear then that 
the family of fractals presented here are poor models for DLA aggregates for d > 4. 
However, the above problem is inherent in all such families of regular fractal representa- 
tions of DLA clusters and arises here from the logarithmic dependence of dF on d. 

The above is repeated for the fractal shown in figure 3. This shape is more realistic 
than the previous one, particularly in d = 2 since its fractal dimension df ( d  = 2) is 
(log 73/log 13) = 1.673 in very good agreement with the corresponding Monte Carlo 
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U 

I 

Figure 3. Altemative model for DLA. In two dimensions this model has d,  = log 73/log 13 = 
1.673 in very good agreement with numerical estimates for the random case. The dendritic 
structure of Monte Carlo generated pictures has been preserved. 

result dr = 1.678*0.047 (Meakin 1983). In general d the b + CO resistance rescaling 
results for this family are 

dr=log(l+4d+8d3)/ log 13 
d, = log[ 13( 1 + 4d + 8d 3)]/log 13 
d, = 2 log( 1 + 4d + 8d3)/log 13( 1 + 4d + 8d3). 

The AO conjecture once again is violated whereas AS holds exactly. Notice that 
this family encounters the same problems as the former one for d > 4. 

Although we have limited our attention above to models with a C4 symmetry the 
result d, = 1 follows for dendritic fractals with general C, symmetry. 

Finally, we introduce loops into our model and note their impact on diffusion on 
the cluster. We perform a b = 5 rescaling on the model of figure 4. Solving the resulting 
set of eleven simultaneous equations yields d,= 1.032 and so d, = 1.214 while the 
analogous b = 5  calculation on the same model without the loops gives d,= 
log ?/log 5 i= 1.083 and so d, = 1.115. This 10% fall in the spectral dimensionality 

(2.14) 

0 
I 

L 

Figure 4. Decimation for a regular fractal, having loops on all length scales, by a factor b = 5. 
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d,  on elimination of the loops in models in d = 2 is typical and itself accounts for the 
deviation from the AO conjecture observed above in the b+m limit. 

In the following section we use the regular models for DLA introduced above as 
fractal lattices upon which to apply fugacity transformation methods (Stanley et a1 
1982). This procedure then gives an error bound for the RSRG which would otherwise 
contain an uncontrolled approximation. We anticipate that the error introduced by 
the RSRG on the random system is similar to that introduced on the regular model. 

3. RSRG approach to random walks on regular models of diffusion-limited aggregates 

In forming the recursion relations below, we use the kinetic interpretation (Nakanishi 
and Family 1984) for the random walks as the local coordination number varies from 
site to site. 

In evaluating each transformation our 'ant' begins his walk at A and finishes at B. 
For a walk of length n we assign a weight W"{(l /Zo)( l /Zl) .  . . (l/Z,,-,)} where 2, is 
the local coordination number of the site that the ant has reached after i steps. Finally 
we sum over all possible walks to form the generating function G( W). We associate 
the renormalised fugacity W with this generating function through 

$W'=  w n { ( l / z ~ ) ( l / z J . .  . (1/Zn-J}. 
walks 

(3.1) 

This recursion relation has a critical unstable fixed point at 0 < W* < 00 and if we 
define A, = (a W / a  W),* we obtain 

d ,  = log A,/log b. (3.2) 
For computational reasons the infinite series G( W) must be truncated at Nth order 

in W. This has the effect of ignoring walks with number of steps n greater than N. 
One problem is to decide when to truncate. 

The diffusion is on a fractal space with d f  < d and as mentioned in the introduction 
two length scales tw, tf exist. We are interested in the self-similar limit and so we 
require that the maximum number of steps in a walk be restricted to r,<< tf. At the 
critical fugacity W* only random walks of length 5,- N ( l ' d w )  are important. We 
therefore ignore walks with N > tL, with y = d,.  However, we have no a priori 
knowledge about d ,  except that d,>  1 and d,> d f  and these imply that 

d,< d ,  < 2 d f .  (3.3) 
We therefore (cf Sahimi and Jerauld 1984) only treat walks whose number of steps 

N satisfy 

N s ( 5w)3df/2. (3.4) 
For example, for the model of figure 1 we choose y = 2.197. 5, is the end-to-end length 
of the random walk, which in the models we investigate equals the dilatation factor 
b. The legitimacy of the procedure was checked by using shorter or longer walks and 
little change in the results for d ,  was observed, for example, inserting y E [2.0,2.4] 
changes the extrapolated results by at most 4%. 

The explicit summation over all possible random walks was camed out using a 
method described in Family and Gould (1984). 

The results obtained (for the model of figure 1) were: d,= 1.73 from a b = 3  
renormalisation; d ,  = 1.89 (for b = 9); d ,  = 1.97 (forb = 27). We now assume (Reynolds 
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er a1 1980) that d,(b) is a quadratic in (log b)-’:  

d,(b) = d,+ C,/(log b ) +  C2/(log b)2.  (3 .5)  

On extrapolating we find that in the b + m  limit, d,=2.14 which yields for the 
spectral dimension d,= 1.37. This result is in qualitative agreement with the Monte 
Carlo result, for the random case, of Meakin and Stanley (d, = 1.20 (+0.10, -0.05)) 
and the resistance rescaling technique for the same model ( d , =  1.19). 

In the light of these results we proceed below with a related RSRG for the random 
DLA system. 

4. An RSRG for random walks on DLA 

We now present a single cell RSRG for deriving d ,  for random DLA in two dimensions. 
This involves three fugacity parameters. A fugacity K is associated with each occupied 
site of the cell, another fugacity W is associated with each step of the incoming particles 
and a third fugacity V is associated with each step of the random walker on the cluster. 
The calculation is in two stages. Firstly one constructs all possible spanning clusters 
in a finite 6 x 6 cell. Universality arguments ensure that no generality is lost by limiting 
the treatment to a square lattice. One begins with a seed site in the lower left-hand 
corner of the cell and introduces a random walker from the North or East. The random 
walker then diffuses through the cell and having landed on a site adjacent to the seed 
site it remains there and a new random walker is introduced and the process repeats 
itself. One then evaluates the number, C,,, of ways of growing a spanning cluster of 
s sites generated by random walks with total number of steps t .  To preserve the 
symmetry we define a cluster to be spanning if it can be traversed both vertically and 
horizontally. The RSRG transformation for K is then given by (Gould et a1 1983) 

This is analogous to the RSRG for lattice animals (Family 1983) and self-avoiding 
walks (de Queiroz and Chaves 1980). 

To derive the recursion relation for W one renormalises all the possible walks on 
a b x b cell to a single step on the renormalised lattice as indicated in figure 5 ( a ) .  As 
the incoming particles are diffusing on a pure lattice we may use the static interpretation 
for the random walks (see Nakanishi and Family 1984). One then obtains 

W’=C C,W” 
n 

(4.2) 

C, being the number of random walks of n steps spanning the cell in one direction. 
This transformation has two stable fixed points at W = 0, W = 00 and an unstable fixed 
point in O <  W*<co. One then proceeds to find the doubly unstable fixed point 
( W*,  K * )  of the pair of transformations and then df follows in the usual way from 
the eigenvalue of the linearised transformation (4.1) at this fixed point. Gould et al 
(1983) find dr=1.71 for b = 2  and df=1.67 for b = 3 .  

The next stage is to consider random walks on the DLA aggregate. As in § 3 we 
use the kinetic interpretation for the walks on the aggregate. We generate all possible 
spanning clusters in all possible ways as above and for each one we evaluate all the 
random walks on the cluster that start from the lower-left corner and traverse the cell 
vertically. Associating the generating function so derived with the corresponding 



Anomalous difusion for DLA 2633 

, W '  

Weight  w 4  W e i g h t  w 5  W e i g h t  w '  

W e i g h t  W e i g h t  

2 k 3  w 2  I I + Z ~ ) ~ ~ ( I /  9 1  8k' w311+2w)v5  111288) 

Weight  

k ' v ' i l l 2 1  

Figure 4. ( a )  b = 2 static renormalisation for random walks on a pure lattice. Each step 
has weight W. All walks, originating from the lower-left corner, traversing the b x b cell 
vertically with number of steps N < b'ld* are weighted, summed and renormalised to W', 
the single step fugacity on the renormalised lattice. ( b )  b = 2 kinetic renormalisation for 
random walks on DLA. Each step of the random walk has weight V / Z ,  for local coordina- 
tion number Z,. All spanning random walks on all spanning cluster configurations are 
weighted appropriately, summed and renormalised to $ K '  V ' .  

quantity on the renormalised lattice, one obtains 

i K ' V ' = C  5 ,  n B, , , (~C , ,K 'W' )V"  (4.3) 

where B,, is the number of walks of n steps spanning in one direction in a cluster of 
s sites (together with a factor associated with the kinetic interpretation of the random 
walk on the cluster). 

One then evaluates the critical fixed point 0 < V* <CO and the associated eigenvalue 
A, = (a V'/a V) K * , W = , V *  from which one derives d ,  = log A,/log b. We perform the 
procedure explicitly for a b = 2 cell. As shown by Gould et a1 (1983), the recursion 
relations for K and W are 
K ' =  6 K 3  W2(1 + 2  W) + 8 K 4  W3( 1 + 2  W) 

i K ' V ' =  (&a +;p)v*+($cy +i$)V3+(gijcY ++&)V4+(& +$)VS 

W'= w 2 + 2 w 3 + 5 w 4 + 1 4 w 5  (4.4) 

(4.5) 

and we obtain for V' 

with cy = 2 W2( 1 + 2 W ) K 3  and j3 = 8 W'( 1 + 2 W) K4. The critical fixed point is E] = F-a;:] (4.6) 

and the eigenvalues here yield d f =  1.71 and d ,  = 1.74. The spectral dimensionality is 
then d,  = 1.97. 

For the b = 3  cell we used a FORTRAN program on a VAX 11/780 machine to 
evaluate the transformations for K, W and V and hence the dimensionalities: 

df = 1.67 d ,  = 1.98. (4.7) 

The closed form calculations for larger cells were not feasible owing to the enormous 
amount of computer time needed. We cannot therefore exploit the usual extrapolation 
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scheme (3.5) but as a first approximation to the b + 00 limit of d, we perform linear 
extrapolation in (log b) - ' ,  i.e. we assume that d, takes the form d,( b )  = d,+ C(1og b) - ' .  
This yields d, = 2.39 and d ,  = 1.39. The error associated with the RSRG on the regular 
system only affects d, .  Similarly, for the random system df is in excellent agreement 
with the numerical data. It is therefore reasonable to expect that the errors in the RG 

treatment of the regular and random DLA models may be related; we assume the 
relationship (which is supported, see the appendix, by a test on percolation infinite 
cluster models) 

d,(exact, random) d,(exact, regular) 
5 

&(RG, random) d,( RG, regular) ' 
(4.8) 

Insertingourresultsinto(4.8)yieldsds(exact,random) 2 (1.19/1.37) x 1.392 1.21 which 
is fortuitously close to that observed in the Monte Carlo work of Meakin and Stanley 
(1983) d,(d = 2 ) =  1.20 (+0.10, -0.05). 

5. Discussion 

The aims of this paper have been to establish which structural features of DLA aggregates 
are relevant to diffusion processes and to evaluate the spectral dimensionality d, as a 
possible test of the conflicting conjectures of Alexander-Orbach and Aharony-Stauffer 
for these systems. 

We have proposed regular fractal models on which calculations could be carried 
out exactly. Models were chosen suggestive of the Monte Carlo generated random 
aggregates. We note that the models used are neither homogeneous nor random and 
therefore violate the hypotheses of the AO and AS conjectures respectively. However, 
their structural similarity to their random counterparts indicates that results obtained 
for these regular models are indeed relevant to DLA. This seems to be borne out by 
the results of 0 4 and the existing Monte Carlo data. 

We find that the most important characteristic of the models as far as diffusion is 
concerned is that they are dendritic. This fact is sufficient to account for the discrepancy 
between the value of d, from the numerical work of Meakin and Stanley (1983) and 
the AO estimate of $ in two dimensions. Other considerations such as the nature of 
rotational symmetry of the aggregates or actual fractal dimension seem secondary. 
This would suggest, for example, that as one decreases the sticking probability p in 
the generation of the aggregate, since df appears to be unchanged (Meakin 1983), i.e. 
p seems to be an irrelevant variable, and the structure remains dendritic, then the 
spectral dimension d, will also remain essentially unchanged. Furthermore, consider 
the aggregate to be constructed from particles whose motion is characterised not by 
random walks but having instead Levy flight trajectories such that 

P ( x  2 U )  = U - f  P ( x <  1) = o  (5.1) 

where P ( x 3  U )  is the probability that the length of the step will be greater than or 
equal to U. The numerical work of Meakin (1984) indicates that df is affected, i.e. f 
is a relevant variable, while the dendritic nature of the clusters is preserved. Our 
reasoning suggests therefore that the dynamic properties of these new aggregates are 
determined uniquely in terms of the modified static geometry, in particular d,= 
2d f / (d f+  1). Monte Carlo work needs to be done to confirm this. 
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We have shown that the resistance scaling exponent d,  is equal to unity in our 
regular models for all values of the embedding dimension d ;  this is another consequence 
of their dendritic nature. Our results are in agreement with the related work of Guyer 
(1984) on the regular Vicsek model. The value d,=  1 obtained for the DLA fractal 
models is consistent with the AS conjecture for d = 2, since there d r G  2. This feature 
persists in the real clusters and so, if it is the only relevant feature, the AO conjecture 
will fail for DLA while the AS conjecture will hold exactly not only for d such that 
d f s  2 but in general embedding dimensions. Further, Havlin (1984) has suggested 
that on a treelike structure the spectral dimension should be given by d,  = ( 2 d r / d r  + l), 
where dr is the 'chemical' dimension. For DLA, it seems that d, = df, since the chemical 
distance scales linearly with Euclidean distance. Hence the AS rule should apply, as 
indeed is found here. 

Finally, in § 4, we obtained an estimate for d ,  in the random system using RSRG 

and the results of 0 3. The result obtained is in good agreement with the numerical 
data, supporting the conclusion that d,(d = 2) falls well short of the AO prediction for 
DLA clusters. 

Acknowledgments 

We thank the referee for an illuminating comment. The support of the SERC, in the 
form of a Research Studentship, is gratefully acknowledged by AC. 

Appendix 

We test the legitimacy of (4.8) by applying it to a related system, percolation. In the 
spirit of Q 3 we have used fugacity transformation methods to determine d ,  for Sierpinski 
gasket models of the infinite incipient cluster in two dimensions. Strictly speaking, 
Sierpinski gaskets model the IIC backbone but here we use them as simple models 
for the full infinite cluster. Explicitly, we have performed b = 2,4,8 renormalisa- 
tions as in figure 6 and obtained d,(2) = 1.82, d,(4) = 2.01, d,(8) = 2.08 using the 
midpoint rule as above. We then apply the extrapolation rule d, (b)  = 
d,+  C,/(log b )  + CJ(1og b)* to obtain d ,  = 2.22 and hence d, = 1.43. Gefen eta1 (1981) 
have performed the resistance rescaling calculation for the Sierpinski gasket and obtain 

A B A  B A  0 A' 8' 
6.2 6.4 b . 0  

Figure 6. b = 2 ,4 ,8  decimation for the Sierpinski gasket model of the percolation IIC. 

During the resistance rescaling V,, = V,,,.. For the RG process, random walks spanning 
from A to B are weighted and renormalised to f V', the weight of the renormalised step 
from A' to B'. 
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d, = 2 log 3/log 5 and therefore, for percolation in d = 2, the RHS of (3.13) becomes 

d,(exact, regular) 
d,( RG, regular) 

= 0.954. 

Now, for the random system we use the accurate numerical results of Zabolitzky 
(1984) (d,('exact', random)= 1.322) and the RG results of Reynolds et a1 (19801, 
d,= 1.898 and Sahimi and Jerauld (1983), d,=2.810 (yielding the estimate d S ( ~ c ,  
random) = 1.351). The LHS of (4.8) thus becomes 

d,(exact, random) 
d,( RG, random) 

= 0.979. 

The error involved in using the relation (4.8) for percolation is therefore less than 
2.5%. This result therefore supports the argument given at the end of 0 4 for the use 
of (4.8). 
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